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ABSTRACT

\We present an O (n) space representation for the separating k-scts of an undirected
k-connected graph G for fixed k, where n is the cardmahty of the vertex sct of G.
Namely, the total space used by the representation is O(k nzy We also improve the

:‘, ) upper bound on the number of separating -sets of G to O (2“—-—) which has a maiching
lower bound
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1. Introduction

s

oAy A
N

Connectivity is an important graph property and there has been a considerable amount of work on algorithms

|~ 4

for determining connectivity of graphs [BeX,Ev2.EvTa,Ga,GiSo,LiLoWi]. An undirected graph G = (V,E) is -

connected if for any subset V' of k—~1 vertices of G the subgraph induced by V-V " is connected [Ev]. A subsct V°

i T T
]

" of k vertices is a separating k-set for G if the subgraph induced by V-V " is not connected. For k=1 the sct V'’
bccomes a single vertex which is called an articulation point, and for k=2,3 the sct V* is called a separating puir
and a separating triplet, respectively. Efficient algorithms are available for finding all scparating k-scts in &-

connccted undirected graphs for k£ <3 [Ta,HoTa,MiRa.KaRa].

AL

In [KaRa2,Ka] we addressed the question of the maximum numbcer of separating pairs, triplets and k-scts in

S

biconnected, triconnected and k-connected undirected graphs, respectively?
) -=-

srs
- <=

An undirccted graph G on n vertices has a trivial upper bound of [2] on the number of scparating 4- ‘\f/“*
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:::o scts, k 2 1. The graph that achicves this bound for all & is a graph on n vertices without any edges. For k=1 the
oL

R
. ' maximum number of articulation points in a connected graph is (n~2) and a graph that achicves it is a path on n ver-
u";

ot
v::: ~ tices. For k=2 the maximum number of scparating pairs in an undirected biconnected graph is J) and a graph

L

S

::. » that achieves it is a cycle on n vertices [KaRa2). Further, we observed that therc is an O (n) representation for the
.',‘.! E: scparating pairs in any biconnected graph (although the number of such pairs could be ©(n?)) [KaRa2]. For k=3
(W ¢

W : N . (n=D(n—4) ,

":| the maximum number of separating triplets in a triconnected graph is B and we presented a graph,
W EN

(W

::f ta namely the wheel [Tu), that achicves it [KaRa2]. The number of separating k-scts in a k-connected graph is
'.;.‘ c 0 (3*n?) and we show that the bound is tight up to the constant {Ka]. The lower bound on the number of scparaung
a'.' EE

D) ~ 2

::. k-scts in a k-connected undirected graph is Q(2* :2

[} ¥

& B

In this paper we present a lincar representation of separating k-sets in k-connected undirected graphs. For
\J .
?{, 3 k=2 representation is different from the one presented in (KaRa2]. We also give the alternative prove of the upper

S

) s,

~ bound on the number of separating k-sets, which match the previous upper bounds for k=2 and k=3, and improves

-

2
the upper bound for general k 1o O (2‘"7). We will first present representation for k=2 and k=3 and then gencral-

izcd the technique for general k.

.,
K
s\r_r

M 2. Graph-theoretic definitions

<=
&

An undirected graph G =(V,E) consists of a vertex set V and an edge set E containing unordered pairs of dis-

unct clements from V. A path P in G is a sequence of vertices <vg, - - - ,v> such that (v;_;,v,)e E.i=1, -+ k. The

-

» - -
-

& -

4 path P contains the vertices vg, « -+ ,v; and the edges (vg,vy), * * * (v, Vi) and has endpoints v, v, and internal

Vertces v, Vgt

0k §

M We will sometimes specify a graph G structurally without explicitly defining its vertex and cdge scts. In such
cases, V(G) will denote the veriex set of G and E (G) will denote the edge set of G. Also, if V' ¢ V and ve V we will
W usc the nowation Vv to represent ViU {v).

. An undirccted graph G =(V,E) is connccted if there cexists a path between every pair of vertices in V. For a
I Y~ zraph G that is not connccted, a connected component of G is an induced subgraph of G which is maximally con-

™ nected.
»
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L
' A ventex veV is an arriculation point of a connected undirected graph G=(V,E) if the subgraph induced by
|
* ! V'—{v} is not connected. G is biconnected if it contains no articulation point.
‘S, Let G=(V,E) be a biconnected undirected graph. A pair of vertices v,,v,€ V' is a separating pair for G if the
BN induced subgraph on V —{v,,v,] is not connected. G is triconnected if it contains no scparating pair.
! E A triplet (v(,va,v4) of distinct vertices in V is a separating triplet of a triconnected graph if the subgraph
induced by V - (v;,v,,v3} is not connected. G is four-connected if it contains no scparating triplets.
: &3 Let G=(V,E) be an undirected graph and let V'cV. A graph G'=(V',E") is a subgraph of G if
a E'cE{(vi,v)Ivi,v,eV’). The subgraph of G induced by V' is the graph G”=(V'.E”) wherc E"=L
<5
R T« {(viv)lv,v,eV).
: .4
[y ' ’
‘ £ 3. Representation for k=2
L)
Let G = (V,E) be an undirected biconnected graph with n vertices and m edges. We denote with g (n) the
<
upper bound on the size of a compact represeniation of separating pairs of a graph on n vertices. Let {vy,va} bea
-,

v

scparating pair that divides G into nonempty G, and G,. Let {w;,w,} be a "cross" separating pair with w,e G

and w,e G,. Itdivides G, into G, and G “*|, and divides G, into G *, and G “*, (sec Figure 1).

Y

y1=V1

Ju
NJ

&2 &

Bz

-
}\.:..‘.‘

Figure 1.
Representation for k=2.

€

Consider a maximal set of vertices u in G > such that {w,u} is a cross separating pair and, analogously, consider a
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maximal sct of vertices x in G such that {x,w,} is a cross separating pair. The set of «’s is the sct of articulation
points in G,. Morcover, the set of u's along with the subgraphs of G, between them is a path from v, 10 va.
Analogously, the sct x's is a set of articulation points of G with additional condition that the x's along with the sub-
graphs of G, between them is a path from v, to v,. Number the vertices v, u’s, v, and x’s by y,, ¥, and o0 on
going clockwisc along the paths. We denote by G, the subgraph of G between y; and y;,;. Note that some G, can
be empty (consists of a single edge). Thus, the graph G becomes a cycle with vertices y’s and G;'s alternating on it
Every pair of vertices y's give a separating pair of G unless they are adjacent and the subgraph between them is

cmpty. Hence, we can represent all of them by the following structure:
1) thecycle: the set of vertices y’s
2y avertex for every G; with a flag to specify if G, is empty. Edges between G; and y,, y; 4.

Note that when there arc no cross separating pairs then we get a trivial cycle with two vertices v, and v, and
two cdges connecting them. Since the sets x’s and u's are maximal all other separating pairs are inside G,uy, Ly, ;.
Note that G; can be the union of disconnected components, but each of them is connected to y; and y,.,,. Let the

cardinality of set of vertices y's be /. Based upon the above observations we get the following recurrence relation

!
g(n)S Fg(m+2)+4l,

=]
where gin, + 2) represent the upper bound for all separating pairs inside G, uy;wy;,;. The cardinality of G; = n,,

i
and Y. (n, + 1)=n. Any g(n) that satisfy the recurrence will be an upper bound on the sizc of representation of

=1

scparating pairs of G. Clearly, lincar g (n) is one of them (see Appendix).

4. Representation for k=3

The wheel W, [Tu] is C,_, together with a vertex v and an edge between v and every vertex on C, ;. Itis

casy to sce that W, is triconnected and has w

-

scparating triplets.

Assume there exists a separating triplet (v,,v,,vy]) in G, which separates G into nonempty (| and (75 see

Figurc 2).

Lemma 1: Onlv onc of these three vertices has type 3 separaung triplets {w_,v,,ws) such that w. € G, and w7 (; .

IKaRal!.
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:.: ‘ Separating G into G, and G, by separating triplet {v,,v,,v3}
uJ
A
v:.. E Proof: Assume there is separating triplet {w;,v,,w,} of the third type in G, where w, €G andw, €G,. It
4
separates G into K; and K,, and separates G, into K5 and K,. Vertices v, and v; must belong to the different
n . . L. . . .
;v < components with respect to separating triplet {w,v,,w3}, otherwise either {w,,v,] is a scparating pair, or (w,,v]}
SRSy
::‘ (s a scparating pair, or both.
“'\'.
N ﬁ Claim 1 Vertex v, has a direct edge to every nonempty subgraph XK, ,K,,K3,K ;4.
.
W
’7: W.L.O.G. assume that K is not empty and Vxe K, (x,v2)¢E. Then (v,,w;} is a scparating pair of G,
JYEERN
?, i3 which scparates K| from the rest of the graph.
)

~
0

::n Now, we will prove that there are no separating triplets of the third type which use v, or v3. We will prove
‘it

p] - . . . o

}‘ E:s' this by contradicion. W.L.O.G. assume there is a separating triplet {u,,v,,u4, ], where 4, € G and u, € G4 (u,
*

Mt

Y

P may be equal to w, and u, may be equal to w,).

o %
go Y Cuse I: u, €K, if K, is not cmpty (sce Figure 3).

,"’, xR By Claim 1 for v, and the existence of scparating triplet (u,,v,,43}, K|, w,, K» — u; bclong 1o the same
i '\

° & connected component with respect to separating triplet {u,v,,u,)}. If v, belongs to the same component then
vl. . . .
:". ;: fv.,u:} 1s a scparating pair which scparates K yuw UK ;Uv5 from the rest of the graph. If v, docs not belong o ‘
AN
» the same component then (v .4, } is a scparating pair which separates K'yuw, UK ; — 1 from the rest of the graph.
Iy

P [ Analogously, u,€K ;.

C(L\(’.?.'u] =Wy

A -
- v
e

5

L
LT}
§,
S
L3
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" Figure 3.
oy Illustrating Case 1 in the proof of Lemma 1.

Q:Q' Since {u,,v|,47} is a separating triplet then v, does not have any cdges 10 K, and hence, K, is empty by
Claim 1. Butthen (v,u;} is a separating pair, if {u«,,v,,u4,]} is a scparating triplet.

N Analogously, u; zw,.
Case3: u, €K, andu, €K 5.

oy

h If {u,.v1.u3]) is a separating triplet then either {u,,x5),0r {u,v,}, 0r {v,,u42) is a separating pair.

- That mcans that if there is a scparating triplet of the third type which uses one of the v,,i=1,2,3 then there arc

no scparating triplets of the third type that use the other v;,j=1,2,3, j#i.

! -
—J

Let {vy.vq.v2) be a separating triplct of a graph G on n vertices, and v, be the only one of the three vertices

-

' of this scparating triplet which might participate in a scparating triplets of the third type with respect to {v,va.val.

Consider all scparating triplets of the third type {w;,vo,w,] such that w,eG, and w.e G, together with

TS

{vi.vp,v2]). All such separating triplets use v, as the "central” vertex. Rename the vertices w's, wa's, v, and va

:;‘ into {v; vy, - - ,v;} going clockwise, such that they form the wheel with v in a center, where any two nonadjacent
* vertices form a scparating triplet with v,. The subgraphs between v; and v,,; are denoted with G,, and some of
23 them may be cmpty. Now, the graph G looks like a wheel with vq inacenter v, and G, (i=1, - - ) onacycle.

-y Every pair of vertices on the cycle of the wheel form a separating triplet with v unless they are adjacent tv,
& and v,,,) and the subgraph (G,) between them is empty. Hence, we can represent these separating triplets by the
i: foilowing structure:

o

i@
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1)  the wheel: {vg.vy, - -,v;) with edges of G

2)  avertex for every G; with a flag to specify if G; is empty. The edges between G; and v;, v;,; and between vy

and v;, G, with flags to specify if the edge is real.

Lct us see where the rest of separating triplets of G lie.

Observation The remaining separating triplets belong to G;uvouv; v, U the ncighbor of v; in G;_; if such a

neighbor is unique w the neighbor of v;,, in G, if such a neighbor is unique.
Let {w,,w>,w3} be a scparating triplet with w,e G, and w,,w3€ G,. The separating triplet {w,,w,,w3} scparatcs
G, into L, and L,, and separates G, into L4 and L 4 (Figure 4).

Let us sce how the original separating triplet (v,,v,,v3} is scparated by the scparating triplet {w,,w,,w, ).

The vertices {v,,v,,v3 cannot belong to the same connected component of G with respect to the separating
triplet {w,,w,,w3}, otherwisc cither w, would be an articulation point, or {w,,w3} would be a separating pair, or

both. W.L.O.G. assume that v, belongs to onc connected component and v,,v5 to the other.

Subgraph L, must be empty, otherwise {w,,v;} becomes a separating pair. Since the graph is triconnccted,

we have

Figure 4.
[Hustrating the proot of the Observaton.
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1 (wy,vy)eE,

2)  3x.yeliyuw,uwsy: (xv))eE, (y,v))eE and

-
.
&= R

. 1
o 3)  Vzel,uLguvyuvs: (2,v))eE.
‘
£
e:, Hence, vertex w, is the unique neighbor of vertex vy in G;. Morcover, if there are any separating triplets
"
v with one vertex in G, and two in G, which separate v, from v, and v,, then w, is one of the vertices of the
A
Wy 'y
D triplet.
vy
I\

A separating triplet cannot have all its three vertices in threc different G;’s otherwise two of these vertices

.
P X
e an
LSS
Py

would form a separating pair. From the proof of the Lemma 1 and the fact that the set {vy,vq, * - -, v, ] is maximal,

Y N

: \ tj we know that if there is a separating triplet which involves a vertex from G, then the other two vertices belong to
i‘ ¥ {v.}ul{via Julve}uG; and the neighbor of v; in G,_,, if such a neighbor is unique, and symmetrically a "unique’
I N

® : neighbor of v;,, in G;,,. This proves the Observation.

: ';’,j a
-
-;.“ Let g (n) be the size of a compact representation of the separating triplets in a graph on n vertices, and let the
WS k
v

i number of vertices in G; be n;. Then 3 (n; + 1) + 1 = r, and we can write the following recurrence rclation

- :: i=]

“ b, !

Wi g(m)= Tg(n+5)+(6l+1),

A

- where (6 + 1) stands for the space used to store the wheel information including multiple cdges. The solution to
Y ™
o ' this rccurrence is clearly linear (see Appendix). This proves that there is a succinct O (n) size representation of the
'

VIR, scparating triplets.

N
b A
bt ¢ 5. Representation for general k
\ J“
[ v >

Let G=(V,E) be an undirected k-connected graph with n vertices and m edges. We denote with ¢ (n) and

f (n) the upper bounds on the size of representation and the number of scparating &-sets for k-connccted graph on n

o

vertices. Let V7 = [vy,va, - - - ,v¢) be a scparating k-sct, whose removal separates G into nonempty G, and G (see

atat
v el

P

Ficurc 5). A scparating k-sct {w;, w3, ' - - ,w} of G is a cross scparating k-sct with respectto Vil 34,5 we (5

B | @F AP

,& and w,e G,. Let the cardinalitics of G| and G, be ! and n-[-k, respectively. Let the upper bound on the size of
"
3 L the representation of the cross separating k-<cts be A (L,n=1), and the maximum number of cross separating k-<cts he
o )
N A ril.n-0). Thenany ¢(n) and f (a) that sausfy the recurrences
w
ngY
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Figure S.
Dividing G into G, and G, by separating k-set {vy, - - - ,v;)

g(n)= [g(l+k)+g(n—l)+ h(l.n—li .

fn)= [f(l+k)+f(n—l)+r(l,n—l)+ 1] ,

arc upper bounds on the size of representation and the number of separating k-sets in G. Now we will derive upper

g~

U

bounds {or the functions 4 and r and tune up the recurrences.

Let {wy.wq, -+ - ,w,) be a cross separating k-set with {w,---,w,} € G;, (W44, W) <G, and

{wWerts " Weul © vy, - v ). The separating k-set {w,,w,, - - - ,w,} separatcs G, into G4 and G 4, scparates
G, into Gs and G, and divides {vy, * =+ ,v} into (v, -+ v}, (Vesrwrs - ovi} and v = woy,, = L.t (scc

Figure 6)

s~ |

Case 1 None of G,, i =3,4,5,6 arc empty. (sce Figurc 6)

22,

The scts {wi,wa, -« Wee Vi Ve ) (WhWa oW Vearats = Vi )s (VL Ve Wearars * - oWy ) and

{Veels © " sVeaWyaar, 7 Wi ] are scparating scts of G that separate G4, G4, G5 and G ¢ respectively, so their cardi-

3 |

nalitics are greater than or equal to k. Then,

§ s+t+r2k r+s+t2k
r+t+k-s-t2k rzs r=g
T‘\r s+t~k-r—-t2k = s2>r = res+t=k
L L k—r+k-s-t2k lk2r+5+1
t L
w . .
t From now on we replace the subscript r by 5. Let A= (v, - v}, B= [viu. v}, C=
fwe,ow )y D= Aweqan-oow), and T= (v, v ) = {we, o owo, ). For Cuase |
# k—t
Lyl — - - ==t
hys Al=1B1=1CI=IDI=-.
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Figure 6.
. Dividing G into nonecmpty components by separating k-scts r
v {Vl,"',Vk}and [wlv"'vwk}'
Clhaim2 Vi i=s+l,.,t 3x;€ G;, j=3,4,56: (vi,x)eE.
ﬁ Proof: W.L.O.G. assume 3v;: Vxe G5: (x,v) )€ E. Then {v,, - - ,v,,,wy, - - ,w,} — {v;] is a separating (k-1)-sct.
- 9
& Claim 3 For cvery xe A there are ye G4 and ze G, such that (x,y)e E and (x,z)e E. Analogously, for every ver-
tex x of B, C and D there are vertices y and z in appropriate neighboring G;, i=3,4,5,6, which arc adjacent to x.
c'.*

Proof: W.L.O.G. assume there is xe A such that for every ye G5 (x,y)¢ E. Then AUCUT-{x] is a scparating (k-

§ 1)-set.

d
e
DS Lemma 2 All cross separating k-sets containing CUT and at least one fixed vertex of D can be represented in
r Uy
& k-t
‘ ~t . AT
o (0] ((-T)z) space, and their number is O (2 2,
- 8]
=2
Proof: Assumc we have a scparating k-set (Wi, * * W saXsareasls " +XsarsashsYservasbhels * " Vi), Where
r
.
::-. x'seGs, y'se Gy, a 21, and either b or k—s—t—a—b is greater or equal to 1 (the new cross scparaung k-sct is Jif-
LY
fcrent from the old onc) (sce Figure 7).
R
y . . .
b Let 11 = (Xeiragers 0 Xsarvaes) (S and I = {Voyigeper, - Vi) (3'8), and let D be divided into D "=
2 L . . L
o [W,cets 7 W Weaea ) E which is in the same connected component as G 5, A, and part of G <, and £ which is in the
2.
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o:‘ INlustrating the proof of Lemma 2.
-
<

same connected component as G 5, B and part of G4. Also let # divide G into G5 and G %, and let [ divide G4

into G % and G ¢ (see Figure 7).

“,-.
-
:
o
~ &

" Scparating sets T'+D +E +/ and T+D “+F +I separate G "’s and G "%, respectively. The cardinalitics of these
o

1. g’ separating sets are less than k. Hence, G”5s and G are empty. Morcover, sincc C+T+D +//+F and
By

X

[ C+T+D +E+] are scparating sets and C+T+D and C+T+D “+//+] arc scparating k-scts, 1E ) =111}, and
ia' ! [7{=1F1. Note that the argument still holds if either # or / are cmpty.

h

)

)

e e Next, we will show that if we replace part of E and/or part of F we will necessarily use only vertices ol 7/
".‘ & and/or I for it, regardless of whether we replace part of D “ or not. In other words, // and / are unique for £ and F.
q

o :m The proof is by contradiction.

P

o

‘O Assume that there exist [{+f7, #/[+{f, such that C+T+D +/[,+[ is a separating k-sct. Lct f/,cGs and
o

‘L 1,cGg. Also,let I+, divide E into E, and E,, and divide F into F and F, (scc Figure 8).
. A i Let /1, be separated into two parts, //*| adjacent to E and £ "y adjacent to F. By the above arguments /77 is
10 A

A

! ’ adjacentto E,, H*"; is adjacent to F 5, and /,; is adjacent to E+F,. Since all ncighbors of E in G, arc also :n/, and
“ .

. N all ncighbors of £ in Gs are also in M, H™) < H and I, is divided into /"y =/ufy and /7 =/,-1". Lot
|

e =111 and let] "= [-[",.
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s -, IMustrating the uniqueness of a replacement for a part of cross separating -set.
LS
N
'. i The separating sct T+D “+#!"|+H separates E, from the rest of the graph and has cardinality is less than £.
D
Qi E Hence, £, is empty and we have / =1", E=E, and H; = H"",. Analogously, the separating sct T+D “+{ +//
14
{
:;" scparates £ from the rest of the graph and has cardinality is less than k. Hence, F'; is empty and we have F = F,,
U
§ oy
s:; yor E=E, H=H,and ! =/,. Thiscontradict the assumptions.
" K
Y Notc that the arguments still hold if either /1 or I are empty, or if we replace only parts of E and F. If part of
"W ! D " is replaced as well, then we will not replace it, so that we will look only at the replacements for £ and F. Also. if
. < ~ there exists a separating k-sct that replaces F by /1, then there is no /1 <G that replaces any part of £ for any cross
! '. T scparating k-sct described in Lemma 2.
L
5‘{f Thus, any replacement of any part of F for any cross separating k-sct specificd by Lemma 2 lics in /7. The sct
P -
oy of veruces which is uscd for all possible replacement of any part of D for a cross scparating k-scts specified by
O
; 4 : Lemma 2 will be called the fringe of D, where / is the fringe of F and / is the fringe of £. Note that there could he
[
v parts of D which do not have any replacements. The cardinality of the fringe of D is less than % = 1D 1. Hence,
o :_ B
\" the representation of all cross scparating k-scts with C+T fixed along with at lcast onc vertex from D takes
N
N o k=t k-t , . - . ‘
& ( O 1({——)") spacc, where 0 ((——)°) space is necded to specify all edges between D and its fringe. This proves the
~ . .
: L space complexity for the representation.
IR
:
®
R
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The number of diffcrent subsets of D is 2'2'. Since for every subset E +F of D there is a unique replacement,

(if it exists) that a scparating k-set specified by Lemma 2, the number of scparating &-sets with C+7 fixed along with

3
. D

k—t
A at lcast one vertex from D is upper bounded by O (2 2 ). This proves the sccond part of the Lemma.
»»
b,

a

Corollary All cross separating k-sets containing 7+D and at Icast one vertex from C can be represented in

2

k-t
0 ((L;i):) space, and their number is O (2 2 ).

* ]
L 4

Takc the maximal set X of disjoint Ce G such that C;+T+D is a scparating k-sct. Analogously, take the max-

imal set Y of disjoint De G, such that C+T +D; is a separating k-set. For T fixed, all cross scparating k-scts arc

e

g upper bounded by 0(2_&2__‘ 1X1 2% IY1)=0@*" 1X1 1Y), and are represented in 0((%)2 (X1 +1Yy)
space. Next we will seec how many different s we nced to consider.
:\’ Take the smallest T =T, such that a cross scparating k-set will have nonempty G; 1=3,4,5.6, if it exist. [f
y there cxist a separating k-set with different T =T,, T, #T,, then it can be of four different types:
: -, ﬁ Type 1). TorA=D and To~B#J,
K Type 2). [Tzr\A:@ or Tzr\B=®] and T\ NT,#D,
] Tyvpe 3). [T2M=® or Tth=®} and T\NT,=0,
g Type 4). T,nA=T and T,~B=D.
;\ Lct us first consider type 4 cross separating k-scts. Since T, must lie completely inside 7'y and T, has the
o smallcst cardinality, then T, =T;. Let the cardinality of X, the maximal disjoint sct of C's, be {, and lct the cardi-
".: nality of the maximal disjoint sct Y be {,, where [, +1, =1 Let us number A, the set X, B and the sct Y. So A
‘ becomes A |, the "nearest” D from Y becomes A,, and so on going clockwise. The cardinality of this sct is { + 2.
;Q From the proof of the Lemma 2 we know that all cross separating k-sets of type 4 consist of three parts: 7'y, C which
A is inside G, and is inside some C’s from sct X and its fringe, and D which is inside G and s inside some D’s from
:}.': sct ¥ and its fringe. Note that Ty any two A,,i=1, +-- [+2 arc also scparaung k-scts if the parts of the graph
'_:’ between them are nonempty. We can also replace parts of A; by its fringe as long the above condiuon will be true.
L Let the part of the graph G between A, and A, .i=1, -+ I+2 be G..i=1, -+ - [+2 (i in this casc wken mod (-2
::: Let (G, — the fringe of A, in G, - the fringe of A, in G, be G 7,i=1, - - - [+2. The only case when T'CA, LA, (or
~
R A A R e A S R e e A R
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,"::.. parts of the fringe of A, and A, ) { <J is not a separating k-set wheni=j—land G, = Q.
HiA
o Based upon above observations the structure (structure 1) which covers all cross scparating k-scts of type 4
]
D will be the following:
':" ] "},
!"l ) :'t- Cy . . .
'5..:: 1) A, withits fringes forall i=1, - - - ,[+2,
l’j E
SIS 2 For cvery nonempty G ;,i=1, - - - ,[+2 we fill all nonexistent edges of the complete graph on the neighbors of

2
1

:,:g G’ asrcal edges. If G ,i=1, - - - ,I+2 is empty for some i then we fill these edges as virwal edges. All of the

0'. |' :\\:

‘::::: & edges of G between A, and G;,,,i=1, - - - ,{+2 are in the structure as real edges.

[ 4

-

*f:‘ f;- Let us see where the rest of the separating k-sets lie assuming there are no cross scparating k-scts of type |

95 and typc 2. Note that we allow separating k-scts of type 3. Let us first the definition of the cxceptiona

’\_{ d 2. Note th all ing k ( 3. Let us first the definition of th ional
N o

:.—. %'ft separaung k-sets. The scparating k-sct is exceptional if it scparates only part of A; an nothing clse for

i i=1, - 1+2.

. o

W

L - Lemma 3: All scparating k-sets which are not covered by the structure 2 and not of type 1 and 2 and not

R

cxceptions are inside G;UA; and its fringes inside G;_; UA; ., and its fringes inside G, ;.

=

K . . R . . . . oy
:.;:': Proof: Since there arc no type 1 and type 2 and no exceptions in scparating k-scts, no separating k-sct is using 7.
&

%) ~

::::' '% There are also no cross scparating k-set which are not covered by the structure 1. Let us sce what happens if a
K h

) scparating k-set crosses some A;,i=1, - - - ,I+2 (see Figure 9).

20
=

.

W.L.O.G. let EUFUH is this separating k-set, which crosses A;, where EcGs, FcGg and //cA,. [t divides

Y,
: Jl, v, A, into A%, A and //. Ttalso divides G5 into G and G ™, and it divides G4 into G g and G . Both A~ and A,
:": s arc noncmpty, otherwise the set Y is not maximal, or there is no cross separating k-scts. If G5 and G " arc
.'t g’ nonempty then EUfIUA ™ and FUIIUA g are separating scts with cardinalitics bigger or cqual to k. But both of
Ayt .
':g" ) them can not have cardinality bigger or equal to &, hence, one of G “’s or G s must be ecmpty. W.L.O.G. let G "¢ be
E::::' : empty. Since A UTud; and A UTuA UM OF are separating k-sct and scparating set, respectively,
: .R tFI2 1A, Since EUHUA ™, is a scparating set, since both G5 and G "¢ can not be cmpty (cxception),
b > A, 1 2 IF |. Hence, A", = IF |, and F is part of the fringe of A,.
“N: 2 Let us sce if a cross separating k-sct crosses two adjacent A,'s. W.L.O.G. EUll, UF CH Ll is a separating
. L k-set, which divides A, into A7, /1, and A 7, and divides 4,,, into A4, I/, and A 7,,;. It scparates G, into
:Ei_ \ G .;and G, itscparates G, into G, and G 7, it scparates G, into G 7,y and G 7,,;. By the above argument,
Wi
N
e
' $~:
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- Illustrating the proof of Lemma 3.
-+, "
VAR G,_y and G7',,, are empty, and E beclongs to the fringe of A;, and / belongs to the [ringe of A,_,. Notc that we
T
N . . . .

_ ‘ don’t need to use the assumption that there are no exceptions. A cross scparating k-sct can not cross three adjacent
o A,’s, since with respect to the middle A; non of G “s and G “’¢ can not be empty. Hence, all other separating &-sct,
L)

! :-:l cxcept exceptions, belong to G, A, U its fringes in G,_; UA, v its fringes in G, .
[} 4 ’.,.F'
i 3
. ! Let us now consider exceptions. W.L.O.G. let there exist an exceptional scparating k-sct, which scparates
N
-' ar part of A,. In other words, there is a separating k-sct which separates part of A; (A7), such that all of the vertices not

.

»
:‘:" wy in A, T arc ncighbors of A ;. The number of the neighbors of A", in G,_|UA; ., WG, UA,,, is less than k. Consider
o - the minimal sct of subscts of A, that covers all vertices of A; which can be scparated by some cxceptional sepasating
] . ..'_,
m k-sct. The number of subsets in this set is less than or equal to the cardinality of A,, whence is at most 57_1- The
2N number of ncighbors of 4, that are used for scparating these subscts is less than or cqual to & vertices per subsats, so
R . . ) k* , k? . L . . -
T their total is at most —~. Note that —~-k such vertices can he inside cither G,_; VA, | or G,uA, . Morcover, il
b ve A, parucipates in some subset of A,, that can be separated by an exceptional separating k-sct, then v has tess than
|‘ n* .
L i Lveruces in G A, L, wG,UA, ;. Hence, if we take the unton of the following scts
:
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D GuUAUA

2)  the neighbors of 4; in G, UA, _;, that are used for exceptional scparating k-scts
3)  thefringe of A,

4)  the neighbors of A, in G, VA, ,;, that are uscd for exceptional scparating k-scts

35) thefringeof A, foralli’s,

will contain all separating k-scts which are not covered by the structure.

The number of exceptional scparating k-sct for A; is bounded by the number of different subscts of A,

k-t k-t

2

Py
-

Hence, itis less than or equal to 2 . Thus, the number of exceptional scparating k-sets is at most ({ +2)2 < .

Based upon this Lemma and the above observation about exceptions, and using structure 1, we can write the
following recurrence, which is valid if there are no type 1 or type 2 separating k-sets:

1+2 _
g (n) = g (ny+k (k=1)}+1) + u+2>(%)k .,

i=]

where cvery term inside the sum covers one of the G,’s, and (l+2)(£,’:-'-) + t is the upper bound on the size of the

-

structure 1. Note that 3 n;+

=]

1«2 Nk -
wlﬂ = n. The solution to this recurrence is O (kn + k) (sce Appendix). Note

-~

that cach (n, + k(k—t)+t) is less than n useif.
Analogously, the recurrence on the upper bound on the number of scparating k-scts become

1+2 142 k-t
F)=3f (k=040 + 22712242 2 (142)

5
1= it

The solution to this recurrence is O(?."-"Ic—z). Note that all cross scparating &-sct of type 3 arc covered by these
recurrences.

Now we will look at type 1. Let T2nA=<T ", T.nB=T"",, and Tlr\T'z:'I-’:. With respect 10 a new cross
separating k-sct which uses 7', some G, i=3,4.5.6 could be empty. Let us first look at a harder case when none of G,
1=3.4.5.6 arc cmpty with respect 1o a new cross scparating k-sct.

A new cross separaung k-set must cross ¢ and D of the old cross separating &-sct which uses 7'y, otherwise
the Claum 2 with respect to the new cross separatng &-set will be violated (see Figure 104,

Sccond, T>=1" otherwise Claim 2 will be cortradicted tor the old cross separaung A-sct.
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Figure 10.
[llustrating the configuration between two cross scparating k-scts
which use different T7s.
Third, C+C 3+l +T =T, C\+C"p+H +T+T ", D \+D 5+H+T+T "5, and D "'\ +D "2+l ,+T | +1 "5 arc

scparating scts with cardinalities less than k, which separate G "4, G "3, G "%, and G s, respectively. Hence, G 775,

G4, G5, and G "¢ arc empty.

Fourth, C\+H +C "3+ T+D 4+ ,+D "7, C 3+l |+C "y+T 24D H+H ,+D 77|,
C=ll (+C " +Ty+D "3~11+D 7, and C 3+11+T,+D " +1{,+D ", are separating scts. Henee, 1€ 1 2 1C 1
ID"121D%1, 1C7121C%1, and D)1 21D"1.  Also, C +l+C "3+T 3+T,+D |+l :+D ";,
C =T "3+H ~C " +T | +D "\ +l1,+D ", C\+H | +C""\+T\+T "p+D 3+ ,+D |, and
C .~ +C " +T.+T"5+D ", +H ,+D ", arc scparating scts. Hence,
|C«| 1T 21C121C51 >0

A F T2 1C 1 21C71 >0

D1+ 1T 121D 121D%1 >0

|
e
{
! 2|+ll'2|2|D”,Ile":l>()

N
Also since we are still in a Case 1 with respect to both old and new cross scparatins k-scts, we have the following
cqualitics
TN =T

AL = 1B = 1D L= = ID S = 1C 0 + L+ 107
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Note that the set T7; has edges 1o the set D ™", the set T 7’5 has edges to the set D 7y, the sct 7775 has edges to the ~t

C ;. and the set T7; has edges to the set C 7", because of the Claim 2 with respect 10 the new cross separating &-sct.

Hence, the maximal disjoint sets for C's and D’s (X and ) will have cardinalities equal 10 1.

Let us take 2 maximal T, and let us take the fringes of A,, B4, C and D (sec Figure 11).

C | does not have the fringe in G 4, otherwise part of C*; which has a fringe becomes a partof /7. If €. has

n

the fringe in G4 then the part of C °; which has the fringe can be separated from the rest of the graph by a separating

L cla

-,

sct C5+T "3+T+ the fringe of C " in G4, whose cardinality is less than k. Hence, € does not have the tninge.

Analogously, C ”';, D "y, and D ™) do not have the fringes. Symmetrically, T and T ", do not have the Iringes.

==

Let f; be the umon of vertices which are used for all possible T2 which create a cross scparating k-scts with

nonempty G, i=3.4,5,6. Let D", be the union of all possible D, D", be the union of all possible D ;. C *, be the

5

union of all possible C*,, C ", be the union of all possible C**,, C*, be the union of all possible C ", C 5 e the
h union of all possible C 5, D “3 be the union of all possible D 5, and D "2 be the union of all possible D ", Let us

show that all of these sets are disjoint.

¥\ B

I o )
L

E

,
v)'
" k.
] Figure 11,
a IMustrating the representation of separating k-scts of Case |
if two or more different intersecting 17 exist.
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Since all of them are symmetric we will prove itonly for C 7 and C ). Assume there arc T3 and 7’5 such that
C ™, for T4 is not disjoint from C | for T4. Then nonempty intersection of C ) for T3 and C*, for T, is separated
from the rest of the graph by a separating set C " for T, T35 0T, u Ty U C7, for Ty, whose cardinality 1s less

than &. This contradiction proves the statement.

The cardinality of the union 1.3”2Ub Ul qul 4 is less than L—;—'— and analogously, the cardinality of

&

- - -

C 3o C 3l ol 5 is less than # Let us call C%, €5, D7, and D s the pseudofringe. Note that A and B

might have tringes , but by the symmetry fz—Tl docs not have any fringes.

The structure which represent all separating k-sets for all possibie T7s will the following (structure 2):
1Y the original separating k-sct with its fringes,
2 the cross scparating k-set with minimum cardinality 7, with its fringes and pscudolringes,

3y for every nonempty G 7, i=3,4,5.6 we will fill all nonexistent edges of the complete graph on the neighbors of
G, if G, is cmpty for any i=3,4,5,6 we will fill thesc noncxistent edges of this complete graph by the virtual
cdges. (For G’y we fill the edges between the vertices of the fringe of A in G4, T4, IA~ part of A, which

Joes not have any fringes, C N S and ¢ ).

From the construction of the structurce it is ¢asy (o sec that this structure cavers all cross separating &-scts tor
all possible T7s, of type 1. Let us see now where the rest of the separaling k-sets lie, if we have separating &k-scts of
tvpe 1.

It there exists T» with at least one of the (5, empty i=3,4,5,6, assuming it is not excepuon, such that there is
another I'- with T>~T. is nonempty along with nonempty T>~8 and T1nA, then all cross separating k-sets of this
I's are covered by the above structure. (They belong to the fringes of A and/or B in G, or (G > and the rest helong o
the erninal cross separating k-set with its fringes or pscudofringes). So all cross separating k-sets wre covered by
this structure. assuming there are no excepuons, hence, all separaung k-sets are cither inside G A LB o the
innges ot Aand Bin G, or G _ACBUT U the fringes of A and B in GG, of cross separauny &-~cts covered by the
structure. Since the structure 1s symmetric, we can look at the cross separating k-sets where the onginal separating

Losctas O LD 1.0 Then the pscudofninges of C and D hecome the pscudotringes of A and B, With respect o this

soparatton of G all separating k-sets are cither inside Gy G« L C LD T L the tninge of Can Gand the ninee o
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D in Gg. or inside G UG guCuUDUT, U the fringe of C in G5 and the fringe of D in G, or scparating k-scis
coverad by the structure. But since in both cases they arc the same scparating k-scts, all scparating k-scts arc cither

inside G yuAUT | UCu the fringe of C in G yu the fringe of A in G, or inside G, UBUCUT U the fringe of 8 in

Ge.or inside GsuAUDUT, U the fringe of A in G4u the fringe of D in G, or inside G guBUDUT U the fringe
ol B in G ;U the fringe of D in G5, or the separating &-sets covered by the structure. To cover all exceptions we will
do what we did for types 3 and 4 separating &-sets, we will add k (k—t) ncighbors of A, B, C and D to cach ol G,

G., G5 and of G4 which can participate in exceptional separating k-sets. Hence, the size of representation s

g(n)-Zg(n + k (k- :)+1)+8( Ic+r
i=l

where every term inside the sum covers one of G; 1=3,4,5,6 along with its appropriatc ncighbors and fringes, and

( a :
‘%—é—-!—k ~t is the upper bound on the size of the structure. Note that Y n; + 2k ~ ¢ = n, hence the solution to the

- i=l

above recurrence is O (nk + k*) (see Appendix). The number of exceptional scparating &-scts is upper bounded by

k-t

3

. The upper bound on the number of scparating k-scts become

k-t

: 3
F0= B ke s | 3 2742
=1

The solution 1o it is O (2%n ~ 2%k?) (see Appendix).

Let us now see what happens if we are in type 2 and no separating k-sets of type 1 exist. W.L.O.G. assume

by,

there 15 a separating k-set which uses Ta=T 0T -, where T5€ A and Tze T, and no scparating k-sct of type T exist

< vwee Froure 12
l U 65 1=3,4.3.6 arc nonecmpty with respect 10 a new cross separating k-set then we become in the Case | with
:‘_’3 rosPeCt 10 4 New Cross scparaung k-sct, hence 1A, 1 = 1B | which is impossible. Hence, one of the G, 1=3.4.5.6 with
”
respect 10 Q new Cross separaung k-set must be empty. W.L.O.G. let the empty G, be cither Gy or G5 with respect
-
;;‘ 1o e new cross separaung k-sct. I G4 is empty then G5 with respect to the new cross scparating A-sct must be
< cmpty, otherwise T _T > CA-UD 5 of the new cross separaung k-sct becomes a separating set with cardinality less
'::: than k. Hencee of G4 s empty then all cross separaung k-set of type 2 belong to the onginal separating A-set with s

fringes. Then all separauny k-set are cither inside G5 oA BT the fringe of A in G the tnnge ot Ban (5, or

Y&,

(;+.A_B _T. _theinnec of An (5ao the finge of 81n G ., or they belong to the umon ol A LB 1 _ the trinees

-

of Vand 8 Note that the later separating 4 sets are covered by the structuee 20 We can write the recarroneos

o
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' Figure 12.
Illustrating tvpe 2 separating k-set when no type 1 separating k-sct exist.

: '::~ stmalar to the above ones except for the sum which will be up to 2 instead of up to 4. The solution will be still of the
2 o~ same order. If G is empty then 1C,1 2 1A, 1, otherwise C,UT UTUB is a separating sct with cardinality less
| . than k. If D, crosses D, (see Figure 12) then AT HUT D, is a scparating sct, so 1C,!l = 1A.l.
h :::: C T D LD 75y 1s a separating set, so 1D ") 2 1D " 1. Also C,uT 0D UlluD ') is a separating sct. s0
:. - ‘D 21D »t. Combining these two we get ID”1=1D"%1. Since, CUT, LT >uDulluD | and
; ! Cool T, UD " Ll D "5 arc scparating sets, so |TH5uD %1 21D 1 21D%I1. Since T\ uD "y ulieD s
: . scparates G 7’ from the rest of the graph, and since the cardinality of this separating sct is Iess than &k, G "7 is empty.
: j:: Hence, D 7', belongs 1o the fringe of D in Gg. Tz =T, in order for the Claim 2 with respect to the old cross
i e separating x-set to be true. And since 1C,1+1T7.1 = 1A | and since the cardinality of the new cross scparating -
E ::'.- setisk, ‘D51 =1D " 1. So, all cross separating k-scts of this type belong 10 GsuAUDUT U the fringe of A in
. :.,{ (; o the tninge of D in G4, if there are no exceptional separating k-scts. Also in the maximal set of disjoint O's (1)

| &

‘ all of D's except D belong 0 G4. If G5 with respect to the new cross scpasating k-set is nonempty, then by the
S shove argument C> will belong o the fnnge of 4. Hence, all cross scparating k-scts belong o the set mentioned
. dbove namely, Gy oA LT LD o the fringe of A in Gy u the fnngesof D, in G <,
.. (‘
- Let us whe the maximal setof C's and D's (X and Y). We know that all cross separating &-scts of tvpe 2 with
- acacmpty G helong o Ge oA DT the fninge of A in G+ the Innge of D an (5. Since we need o consider
-~
e

, s . . . ) s
4 i YSOMO <, A0 1A%, U () ) (] LN vy ¢ Dy 0 L) LR
A S A ML R A v -i"n"'d",l URDASA AU DR TP Sl WL LT ':e.‘.v",‘:.#te(”,tF‘,«"tt"’,v'-‘.u‘-’:l"."ﬁ.o X ',’4?*"‘3-
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;. - all symmetnic cases, and since we don’t have any cross separaung &-scts of type 1, all cross scparating &-scts ol the

DN .

i E type 2 belong to Gywd L CUT w the fringe of A in Gsu the fringe of Cin G5, or G, UBLCUT (U the fringe of B

12"

j‘é in G,w the fringe of C in Gy, or GsuAUDUT | the fringe of A in Gyu the fringe of D in G, or
Ré

h f_ G BUDUT, U the fringe of B in G yu the finge of D in Gs. Note that C's and D’s arce not the same in these sets.

In casc of G5 C1s "nearest” to 4, in case of G4 C is "nearest” to B, in casc of G5 D is “ncarest” to A, and in casc of

< |

¢ G D 1s "nearest” 1o B. Lct us see where the rest of separating k-sets must lie. First, if there are no cross separating
?‘!: N &-scts with G5 nonempty (or same other appropriate symmetric G, i=3,4,5,6) then it is still possible to have a cross
e &
L separaling k-sets.
4";
R All cross separating k-sets consist of three parts: part one is in G, part two is in G, and part three is 7. Part
» r
o
'“, one helongs to some C from the set X or its fringe or the fringe of A in G, or the fringe of B in G,. Part two
e O
L)
- belongs 1o some D [rom the set Y or its fringe or the fringe of A in G 5 or the fringe of B in G . That covers all cross
o - ~eparating &-sets which use Ty, otherwise cither set X or sct Y is not maximal. We don’t have any cross scparating
.J ‘_:
1 7. x-ets of tvpe 1. All cross separating k-scts of type 2 with nonempty appropriate G, with respect to them belong 1o
" & the part of the graph between A and the nearest D in G, along with A and its fringe and D and its (ringe. Hence, all
r
i other separating k-scts belong 1o GuACBUT, with its fringes, or G,UAUBUT | with its (ringes.
w
:f ::s' Hence, all cross separating k-sets of type 2, except exceptions are covered by the structure 2 or inside the the
[N *
J . suburaphs associated by G, Gy .1, Gy,.2 and Gy,. As for the exceptions the upper bounds we got for types 3 and 4
S sull hold, since no part of T can be scparated by them (otherwise Claim 2 is contradicted). So, the recurrence
i
~ . A\ . . . .
b which were written for the type 3 and 4 separating &-scts covers type 2 cross separating &-sets also, including cxcep-
X
: uons. That conclude Case 1.
¢
5o 3
~
. -:j Case 2 For any scparauing k-sct every cross separating k-sct will have one of the G; i=3,4,5.6 empty. Not every ver-
N
. », s .
." - tex inboth G and G » can be used for cross scparating &-sets.
v‘. L] , . A
» N W.L.O.G. let G, will be empty (see Figure 13).
D » Q.J i
'a. Since G4 1s nonempty by assumption, and G is nonempty since there are no exception, C UTCB and ACT WD are
» ‘~.
i ’l
Z" scparating sets. So therr cardinalities are bigger or equal to k. hence, IC1=tAland 1B 1 = 1D |. So.Cis part of
: . the tnnee of A m G« Since thus true for every T, all cross separating k-sets befong 1o Gy AT UBU the fringes of
5
R N
c: ot
) . s »
e
R
L)

)
¢ '

»

T 1, > - ’ Q
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Figure 13.
[lustrating Cases 2 and 3.

Aand B in G,, or GouAUTUBUL the fringes of A and B in G, except for exceptions. So all scparating k-scls
including the exceptions are cither inside G, uAUBUTU appropriatc at most k2 neighbors of AUTUB in G» or
inside G »wALUBUTU appropriate at most k> neighbors of AUTUB in G, which arc uscd in excepuonal separating
k-sets. Hence,

g(n)=gin, +k(k=1)) +g(ny + k(k-1)) + 32,
~here 7y and n, are the cardinalities of G, and G,. We still have that n, + n, + k£ = n, and the solution to this

recurrence is O (k* + n) (sce Appendix). Note that n, + k(k-1) < n for i=1,2.
For the upper bound on the number of separating k-scts we get the following equality

fmy=f(n, +2k)+f(ny+2%)+ 2,

”
i . . . . . S n*
where 2* covers all exceptional separating £-scts. And its solution is clearly smalicr than ) (2*

) (sec Appendix).

That conclude Case 2.
a
Case 3 For cvery separating k-set all cross separating &-scts are lopsided (one of the G, i=3,4.5.6 will be empiy ).
And cither G, or G ; arc such that every vertex of them is used for some cross separating k-sct.
W.L.O.G. Ict G5 be cmpty and the smallest G, every veriex of G ; is used 10F SOMe Cross separating k-sct (sov

Figure 13). There are two subcases: cither G s or G4 are emply, otherwise we will be in Case 2. Take € as large as




possible.
. ,t‘ If G is empty then AuBUCUDUT with all edges between them and filling real edges for nonempty G 5 and
L)
X o G4 and virtual otherwise (analogous to the structure 1) will specify all cross separating k-sets. If G is empty then
] ‘P"v
o

CUTUD separate A from the rest of the graph. Hence, C\UTWD is an exceptional separating k-set. So the third

structure will be the following:

I

K 1) A, BandT - the original separating k-set,

y : 2)  All the neighbors of AUBUT that are used for a cross separating k-sets with edges between them and the ori-
A ginal separating k-set.
'.h.
e

since the remaining separating k-sets are inside G,AUBUT, we derive the following recurrence relation:

gn)y=g(n-1)+ k2,
- whose solution is f (n) = O (k*n). Analogously, we have the following recurrence relation for the upper

¥ - bound on the number of separating k-sets
[}

. ‘ F(m)=f(n=1)+2%

whose solution is O (2%n).

That conclude the proof of all cases. Our final result is that all separating k-sets have O (k*n) space represen-

2
tation, and their number is O (2* -”k—).
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APPENDIX

g(n) < mGX(Eg(n. 2)+40)

[

Letg(n)y=4n - 16,

g(n)<max(2g(n,+’>)+4l) mm\2(4(n +2)-16)+4) =
i=1 i=l

max(42(n, +1D+4-16l +4)) = max(4n -8l)<4n-16

i=1

!
Z(mi+h+1=n 2<i<n-1 n 20
i=]

!
g < m?x(Zg (n; +5)+6l+1)

Letg(n)=6n - 55,

g(n) <max(2g(n +3)+6l+ D= max(Z((S(n -55)+6l+1)=

i=1 =1

max(6(2(n‘+1)+]) 3U+6l+1)= max(6n—751—<)<6n—55
=1

S+ 5 si=n  0<rsk-2 2<15225L az0
=] “ -
(S
&'(")<maX(Zs’(n ~ (k- Dk +1)+ 1k +1

i=]

Letgtny=2nk -3k = 2k°1 + —k* = 3kt -
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g(n)<ma‘<(2g(n +(k -0k 1—l)+lk
s=|

+t)£

max(Z"L(n sk —1)+0) - k31 + %2 ll+—2-k I—Lll—tl+lkk
i=l

+1)=

";‘ = 2kt + Uk = 1) + 2kl - 4631+ 2K + %/81 = Skal - ol + S

mn(’k(Z(n + k : !

1= ~

Y+ 1) -2k
m¢x(°kn+ (1—71)+7/c2{( 1+l)+k2(%1+7’1-—l)+/ct(l—-2+21——1'—3I)+1(—-/+ 1)<

2kn—4k3-3kt+ts2kn—4k3+2k21+%k2—3k1—1

Hence, g (n) = O (nk + k).

Z("L )‘*‘l’” ZSISZ:_i 0<t<€n-=-2
k-t
-
f(n)<max(2f(n +k(k~t)+1)+2"“l( =2 Ty

=l it

Let

Flny=25"nl = 2770+ 2"kl + %2*'%1 - %2*-'11 + 25k + — 7*-% 2252k o }

-~ ‘.

finy< max(}:(n Kk = t)+ 2%~ — 2kt 2[2 4 k=12 2"“kl~ - ﬂ"-'m 2kl 4
< 2

k-t k~t
L - - cy Lo T Loz Lo ke
TR S22 -2 - SR S22 T e SO - S22 2 ) = max(2n -

-

l x l n - I - —_ - bl —_ 1 -
SRR e R S 2R 2R - 2R e 2R S DT e D e 2R -
3 1 1 = 1 <
SRt e 2Rl R = 22K - 2R = 2 02 e SR ok 0 P s
2 2 2 2 2
1 k-t
max(24~n = 2 2%k 3 + 25kl 7*-%1 22U - 22 - 2 -2 g
{ - -
LKl
a2 - 273 26+ S ovg - Dok ke Lok eer gt L Loy 007
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Henee, finr = ()(?."% - 2*nk).
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Z”i+2k—f2" 0<r<k-2
i=1

g(n)<2g(n +k(k +¢

=1

% =4 - — —_ - —_ - —% —_
Let g(n) nk Jk + 3kl+3k 3 4 3(

4
g Yem+kk -+ +Hk -0k +1<
i=l

16,3, 16 2 4,2 16

Hn, +k(k - k— —k3 + — —k--—L-— Ak -tk +1=
‘21( (n, k=20 +1) 3 3'k1+3 3 t D+4Ak -tk +¢
4k(in,-+2k—x)—8k2+4kz+16k3—16k2:+16kz—%k3+%"'-k2:+%9k2-9;—k:—%:uk:-mﬂ_

4kn+k3(16-%“—)+k2:(%—16)+k2(%—8+4)+k:(4+16—%—4)“(1 - %):

16 16 4 16 1
4 LY .3 2V 2 22 M, L
kn 3Ic+3lct+3k 3Ict 3t
Hence, g (n) = O (nk + &3).
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S(n + Y+t=n 0<t<n-2
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ny+ny+k=n ny,ny,20
gmy<gn, ~k(k=1)+gny+k(k 1)+ k"

Letgwny=n — 6k + 3k,

g(nysSn, + k> —k-6k>+3k +na+k*—k—6k>+3k+3k>=n-6k*+

n.+ny+k=n ny,ny20
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